
COMPILER DESIGN AND CASE TOOLS

LABORATORY MANUAL

[R20A0587]

B.TECH III YEAR – I SEM

[A.Y:2023-2024]

MALLA REDDY COLLEGE OF ENGINEERING

&TECHNOLOGY
(Autonomous Institution –UGC, Govt. of India)

Recognized under2 (f) and12 (B)of UGC ACT1956

(Affiliated to JNTUH, Hyderabad, and ApprovedbyAICTE-AccreditedbyNBA&NAAC–‘A’Grade-ISO9001:2015Certified)

Maisammaguda, Dhulapally (PostVia.Hakimpet), Secunderabad–500100, Telangana State, India

INDEX

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vision

 To acknowledge quality education and instill high patterns of discipline making

the students technologically superior and ethically strong which involves the

improvement in the quality of life in human race.

Mission

 To achieve and impart holistic technical education using the best of infrastructure,

outstanding technical and teaching expertise to establish the Students into

competent and confident engineers.

 Evolving the center of excellence through creative and innovative teaching

learning practices for promoting academic achievement to produce international

accepted competitive and world class professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1–ANALYTICALSKILLS

1. To facilitate the graduates with the ability to visualize, gather

information, articulate, analyze, solve complex problems, and make decisions. Entail

to address the challenges of complex and computation intensiveproblems increasing

their productivity.

PEO2–TECHNICALSKILLS

2. To facilitate the graduates with the technical skills that prepare them forimmediate

employment and pursue certification providing a deeper understanding of the

technology in advanced areas of computer science and related fields, thus

encouraging to pursue higher education and research based on their interest.

PEO3–SOFTSKILLS

3. To facilitate the graduates with the soft skills that include fulfilling themission,

setting goals, showing self confidence by communicating effectively, having a

positive attitude, getinvolved in team-work, being a leader, managing their career and

their life.

PEO4–PROFESSIONALETHICS

4. To facilitate the graduates with the knowledge of professional and ethical responsibilities

by paying attention to grooming, being conservative with style, following dress codes,

safety codes, and adapting themselves to technological advancement.

PROGRAMOUTCOMES (POs)

By the end of the program in CSE, all graduates willbe able to have the following

measurable skills:

1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution

of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problem searching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

3. Design/ development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of

data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and modeling

to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities

with the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding o

the engineering and management principles and apply these to one’s own work, as

a member and leader in a team, to manage projects and in multi disciplinary

environments.

12. Life- Long learning: Recognize the need for, and have the preparation and ability to

engage inindependent and life-long learning in the broadest context of technological

change.

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to the starting

time),those who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab with

the synopsis / program/ experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim,

Algorithm, Procedure, Program, Expected Output, etc.,) filled in for the lab

session.

b. LaboratoryRecord updated upto the last session experiments and other utensils (if any)

needed in the lab.

c. Proper Dress code and Identity card.

d. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system

allotted to you bythe faculty.

4. Execute your task in the laboratory, and record the results / output in the lab observation note

book, and get certified by the concerned faculty.

5. All the students should be polite and cooperative with the laboratory staff, must maintain the

discipline and decency in the laboratory.

6. Computer labs are established with sophisticated and high-end branded systems, which

should be utilized properly.

7. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab

sessions. Misuse of the equipment, misbehaviors with the staff and systems etc., will attract

severe punishment.

8. Students must take the permission of the faculty in case of any urgency to go out; if anybody

found loitering outside the lab / class without permission during working hours will be treated

seriously and punished appropriately.

9. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab

after completing the task (experiment) in all aspects. He/she must ensure the system / seat is

kept properly.

HEAD OF THE DEPARTMENT PRINCIPAL

MALLAREDDYCOLLEGEOFENGINEERING&TECHNOLOGY
Maisammaguda, Dhulapally Post, Via Hakimpet,Secunderabad–500100

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDEX

S.No Experiment/Topic

PageNo Remarks

Importance/Rational behind the CD Lab 1

Objectives & Outcomes 2

1 Case Study : Description of the Syntax of the source

Language(mini language) for which the compiler components

are Designed

5

2 Write a C Program to Scan and Count the number of characters,

words and lines in a file.

9

3
Write a C Program to implement NFAs that recognize identifiers,

constants and operators of the mini language.
16

4 Write a C Program to implement DFAs that recognize identifiers,

constants and operators of the mini language.
22

5 Design a lexical analyzer for the given language. The lexical

analyzer should ignore redundant spaces, tabs and newlines,

comments etc.

28

6
Implement the lexical analyzer using JLex, flexor other lexical

analyzer generating tools.
33

7 Design Predictive Parser for the given language 41

8
Design a LALR bottom up parser for the given language 43

9
Convert the BNF rules into Yacc form and write code to

generate Abstract syntax tree.
53

10
A program to generate machine code from the abstract syntax

tree generated by the parser.
56

Additional/ExtraPrograms[Optional]

1 Lex Program to convert abc to ABC

2
Write a lex program to find out total number of vowels and

consonants from the given input sting.

3 Implementation of Predictive Parser

4 Implementation of Recursive Descent Parser

5 Implementation of SLR Parser

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 1

IMPORTANCE OF COMPILER DESIGN LAB

 Compiler is software which takes as input a program written in a High-Level language and

translates it into its equivalent program in Low Level program.

 Compilers teach us how real- world applications are working and how to design them.

 Learning Compilers gives us with both theoretical and practical knowledge thatis crucial in order to

implement a programming language. It gives you an new level of understanding of a language in

order to make better use of the language (optimization is just one example).

 Sometimes just using a compiler is not enough. You need to optimize the compiler itselffor your

application.

 Compilers have a general structure that can be applied in many other applications, from

debuggers to simulators to 3D applications to a browser and even cmd/shell.

 Understanding compilers and how they work makes its supper simple to understand all the

rest.abit like a deep understanding of math will help you to understand geometry or physics. We

cannot do physics without the math not on the same level.

 Just using something (read: tool, device, software, programming language) is usually enough

when everything goes as expected. But if something goes wrong, only a true understanding of

the inner workings and details will help to fix it.

 Even more specifically, Compilers are super laborated/sophisticated systems(architecture ally

speaking). If you will say that can or have written a compiler by yourself -there will be no

doubt as to your capabilities as a programmer.

 There is nothing youcannot do in the Software realm. so, better be a pilot w h o has the

knowledge and mechanics of an airplane thanthe one who just know how to fly.

 Every computer scientist can do much better if have knowledge of compilers a part from the domain

and technical knowledge.

 CompilerdesignlabprovidesdeepunderstandingofhowprogramminglanguageSyntax,

 Semantics are used in translation into machine equivalents apart from the knowledge of

various compiler generation tools like LEX, YACC etc.

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 2

OBJECTIVES:

OBJECTIVESANDOUTCOMES

To provide an Understanding of the language translation peculiarities by

Designing complete translator for mini language.

OUTCOMES:

By the end of the course students will be able to

1) Understand the practical approaches of how a compiler works.

2)Understand and analyze the role of syntax and semantics of

Programming languages in compiler construction

3) Apply the techniques and algorithms used in Compiler Construction in compiler
component design

4) To use different tools in construction of the phases of a compiler for the mini

language

RECOMMENDEDSYSTEM/SOFTWAREREQUIREMENTS:

To execute the experiments, we should have the following hardware/software at minimum

1. Intel based desktop PC with minimum of 166MHz or faster

processor with at least 64MBRAM and100MB free disk space.

2. C++ Compiler and JDK kit, Lex or Flexand YACC tools(Unix/Linux utilities)

USE FULTEXTBOOKS/REFERECES/WEBSITES:

1. Modern compiler implementation Inc, Andrew.
Appel,RevisedEdn,CambridgeUniversityPress

2. Principles of Compiler Design.– Navaho, J.DUllman;Pearson Education.

3. lex&yacc, -John Levine, Tony Mason ,DougBrown;O’reilly.

4. Compiler Construction, -LOUDEN, Thomson.

5. Engineering a compiler–Cooper& Linda, Elsevier

6. Modern Compiler Design– Dick Gru ne, HenryE.Bal, CarielTHJacobs, Wiley Dreatech

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 3

SOURCELANGUAGE (ACaseStudy)

Consider the following mini language, a simple procedural High-Level Language, operating on

integer data with a syntax looking vaguely like a simple C crossed with Pascal. The syntax of the

language is defined by the following BNF grammar:

<program>::=<block>

<block>::={<variabledefinition><slist>}

|{<slist>}

<variabledefinition>::=int<vardeflist>;

<vardeflist>::=<vardec>| <vardec>,<vardeflist>

<vardec>::=<identifier>|<identifier>[<constant>]

<slist>::=<statement>|<statement>;<slist>

<statement>::=<assignment>|<ifstatement>|<whilestatement>|<block>

|<printstatement>|<empty>

<assignment>::=<identifier>=<expression>

|<identifier>[<expression>]=[<expression>

<ifstatement>::=if<bexpression>then<slist>else<slist>endif

|if<bexpression>then<slist>endif

<whilestatement>::=while<bexpression> do<slist>enddo

<printstatement>::=print{<expression>}

<expression>::=<expression><addingop><term>|<term>|<addingop><term>

<bexpression>::=<expression><relop><expression>

<relop>::=<|<=|==|>=|>|!=

<addingop>::=+ |-

<term>::=<term><multop><factor>|<factor>

<multop> ::=*| /

<factor>::=<constant>|<identifier>|<identifier>[<expression>

|(<expression>)

<constant>::=<digit>|<digit><constant>

<identifier>::=<identifier><letterordigit>|<letter>

<letterordigit>::=a|b|c|….|y|z

<digit>::=0|1|2|3|…|8|9

<empty>::=has the obvious meaning
Comments : zero or more characters enclosed between the standard C/Java style comment

brockets /*…*/. The language has the rudimentary support for 1-Dimensional arrays. Ex: int

a[3] declares a as an array of 3elements,referenced as a[0],a[1],a[2].

Sample Program written in this language is:

{

int a[3],t1,t2;
t1= 2;

a[0]=1;

a[1]=2;
a[t1]=3;

t2=-(a[2]+t1*6)/a[2]-t1);

if(t2>5) then print(t2);
el se

{

int t3;

t3= 99;
t2=25;

print(-11+t2*t3);/*this is not a comment on two lines*/

}
Endif }

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 4

1. Problem Statement:

Write a C Program to Scan and Count the number of characters, words, and lines in a file.

AIM: To Write a C Program to Scan and Count the number of characters, words, and

lines in a file.

ALGORITHM/PROCEDURE/PROGRAM:

1. Start

2. Read the input file/text

3. Initialize the counters for characters, words, lines to zero

4. Scan the characters ,words , lines and

5. Increment their respective counters

6. Display the counts

7. End

Program:

#include<stdio.h>

#include<stdlib.h>

int main()

{

FILE *fp;

char fname[10],ch;

int c_count=0,w_count=0,l_count=0;

/* Input Surce File name */

printf("\nEnter the file name: ");

scanf("%s",fname);

/* Open Source file in Read mode */

fp=fopen(fname,"r");

/* Check if the file existing */

if(fp==NULL)

{

printf(" Unable to Open %s file",fname);

printf("\n Please check if it exists!");

exit(EXIT_FAILURE);

}

while((ch=fgetc(fp))!=EOF)

{

c_count++;

/* Check for newline chars */ if(ch == '\n'|| ch == '\0')

l_count++;

/* Word count */

if(ch ==' '|| ch == '\t' || ch == '\n' || ch == '\0')

w_count++;
}

if(c_count>0)

{ w_count++;

 l_count++; }

printf("\n The file Statistics \n");

printf(" The No of Characters: %d", c_count);

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 5

 printf("\n The No of Words: %d", w_count);

printf(" \n The No of Lines: %d", l_count);

/* Close file to release resource */

fclose(fp);

} //End of main()

Input: Enter the Identifier input string/file:

These are few sentences in

mini Language

Output:

No of characters: 35

No of Words: 7

No of lines: 2

[Viva Questions]

1. What is Compiler?

2. List various language Translators.

3. Is it necessary to translate HLL program? Explain.

4. List out the phases of a compiler?

5. Which phase of the compiler is called an optional phase? Why?

Signature of faculty

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 6

2. Problem Statement: Write a C Program to implement NFAs that recognizeidentifiers, constants, and

operators of the mini language.

AIM: To Write a C Program to implement NFAs that recognizes identifiers, constants, and operator

soft the mini language.

ALGORITHM/PROCEDURE/PROGRAM:

1. Start

2. Design the NFA(N) to recognize Identifiers ,Constants ,and Operators

3. Read the input string give it as input to the NFA

4. NFA processes the input and outputs “Yes” if wЄL(N),“No”, otherwise

5. Display the output

6. End

Program:

#include <stdio.h>

#include

<string.h> #include

<stdlib.h>

// Returns '1' if the character is a

DELIMITER.int isDelimiter(char ch)

{

if (ch == ' ' || ch == '+' || ch == '-' || ch == '*' ||ch

== '/' || ch == ',' || ch == ';' || ch == '>' ||

ch == '<' || ch == '=' || ch == '(' || ch == ')' ||ch

== '[' || ch == ']' || ch == '{' || ch == '}')

return (1);

return (0);

}

// Returns '1' if the character is an

OPERATOR.int isOperator(char ch)

{

if (ch == '+' || ch == '-' || ch == '*' ||ch

== '/' || ch == '>' || ch == '<' || ch ==

'=')

return (1);

return (0);

}

// Returns '1' if the string is a VALID

IDENTIFIER.int validIdentifier(char* str)

{

if (str[0] == '0' || str[0] == '1' || str[0] == '2' ||

str[0] == '3' || str[0] == '4' || str[0] == '5' ||

str[0] == '6' || str[0] == '7' || str[0] == '8' ||

str[0] == '9' || isDelimiter(str[0]) == 1)

return (0);

return (1);

}

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 7

// Returns '1' if the string is a

KEYWORD.int isKeyword(char* str)

{

if (!strcmp(str, "if") || !strcmp(str, "else") ||

!strcmp(str, "while") || !strcmp(str, "do") ||

!strcmp(str, "break") ||

!strcmp(str, "continue") || !strcmp(str, "int")

|| !strcmp(str, "double") || !strcmp(str, "float")

|| !strcmp(str, "return") || !strcmp(str, "char")

|| !strcmp(str, "case") || !strcmp(str, "char")

|| !strcmp(str, "sizeof") || !strcmp(str, "long")

|| !strcmp(str, "short") || !strcmp(str, "typedef")

|| !strcmp(str, "switch") || !strcmp(str, "unsigned")

|| !strcmp(str, "void") || !strcmp(str, "static")

|| !strcmp(str, "struct") || !strcmp(str, "goto"))
return (1);

return (0);

}

// Returns '1' if the string is an

INTEGER.int isInteger(char* str)

{

int i, len = strlen(str);

if (len == 0)

return (0);

for (i = 0; i < len; i++) {

if (str[i] != '0' && str[i] != '1' && str[i] != '2'

&& str[i] != '3' && str[i] != '4' && str[i] != '5'

&& str[i] != '6' && str[i] != '7' && str[i] != '8'

&& str[i] != '9' || (str[i] == '-' && i > 0))

return (0);

}

return (1);

}

// Returns '1' if the string is a REAL

NUMBER.int isRealNumber(char* str)

{

int i, len = strlen(str);

int hasDecimal = 0;

if (len == 0)

return (0);

for (i = 0; i < len; i++) {

if (str[i] != '0' && str[i] != '1' && str[i] != '2'

&& str[i] != '3' && str[i] != '4' && str[i] != '5'

&& str[i] != '6' && str[i] != '7' && str[i] != '8'

&& str[i] != '9' && str[i] != '.' ||

(str[i] == '-' && i >

0))
return (0);

if (str[i] == '.')

hasDecimal = 1;

}

return (hasDecimal);

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 8

}

// Extracts the SUBSTRING.

char* subString(char* str, int left, int right)

{

int i;
char* subStr = (char*)malloc(sizeof(char) * (right - left + 2));
for (i = left; i <= right; i++)

subStr[i - left] = str[i];

subStr[right - left + 1] = '\0';
 return (subStr);

}
// Parsing the input
STRING.void parse(char* str)

{
int left = 0, right = 0;

int len = strlen(str);
while (right <= len && left <= right)

{

if (isDelimiter(str[right]) == 0) right++;

if (isDelimiter(str[right]) == 1 && left == right)
{

if (isOperator(str[right]) == 1) printf("'%c' IS AN OPERATOR\n", str[right]);

right++;
left = right;

}

else if (isDelimiter(str[right]) == 1 && left != right || (right == len && left != right))
{

char* subStr = subString(str, left, right - 1);

if (isKeyword(subStr) == 1)

printf("'%s' IS A KEYWORD\n", subStr);
else if (isInteger(subStr) == 1) printf("'%s' IS AN INTEGER\n", subStr);

else if (isRealNumber(subStr)== 1)

printf("'%s' IS A REAL NUMBER\n", subStr);
else if (validIdentifier(subStr) == 1 && isDelimiter(str[right - 1]) == 0) printf("'%s' IS A VALID

IDENTIFIER\n",subStr);

else if (validIdentifier(subStr) == 0 && isDelimiter(str[right - 1]) == 0)
printf("'%s' IS NOT A VALID IDENTIFIER\n",subStr);

left = right;

}

}

return;

}

// DRIVER FUNCTION

void main()

{

// maximum length of string is 100 here

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 9

char str[100] = "int a = c + y; ";

//clrscr();

parse(str); // calling the parse function

}

OUTPUT:

[Viva Questions]

1. What is a Preprocessor and what is its role in compilation?

2. Which language is both compiled and interpreted?

3. List out the languages that are interpreted?

4. Explain the working of a NFA?

5. When do you prefer to design an NFA to DFA?

EXERCISE:

1) Design an NFA to recognize the identifiers, keywords,

constants, and comments of C language?

2) Write a C/Python C Program for the implementation of above NFA.

Signature of faculty

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 10

3. Problem Statement: Write a C Program to implement DFAs that recognize identifiers,

constants, and operators of them in language.

AIM: To Write a C Program to implement DFAs that recognize identifiers, constants, and

operator soft he mini language.

ALGORITHM/PROCEDURE:

1 Start

2 Design the DFAs(M)to recognize Identifiers, Constants, and Operators

3 Read the input string w give it as input to the DFAM

4 DFA processes the input and outputs “Yes” if wbЄL(M),“No” otherwise

5 Display the output

6 End

Program:

#include<stdio.h>

#include<string.h>
#include <stdlib.h>

// Returns '1' if the character is a DELIMITER.

int isDelimiter(char ch)
{

if (ch == ' ' || ch == '+' || ch == '-' || ch == '*' ||ch == '/' || ch == ',' || ch == ';' || ch == '>' ||

ch == '<' || ch == '=' || ch == '(' || ch == ')' ||ch == '[' || ch == ']' || ch == '{' || ch == '}')
return (1);

return (0);

}

// Returns '1' if the character is an OPERATOR.int
 isOperator(char ch)

{

if (ch == '+' || ch == '-' || ch == '*' ||ch == '/' || ch== '>' || ch == '<' || ch == '=')
return (1);

return (0);

}

// Returns '1' if the string is a VALID IDENTIFIER.
int validIdentifier(char* str)

{

if (str[0] == '0' || str[0] == '1' || str[0] == '2' || str[0] == '3' || str[0] == '4' || str[0] == '5' ||
str[0] == '6' || str[0] == '7' || str[0] == '8' ||str[0] == '9' || isDelimiter(str[0]) == 1)

return (0);

return (1);
}

// Returns '1' if the string is a KEYWORD.

int isKeyword(char* str)

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 11

{

if (!strcmp(str, "if") || !strcmp(str, "else") || !strcmp(str, "while") || !strcmp(str, "do") ||

!strcmp(str, "break") || !strcmp(str, "continue") || !strcmp(str, "int") || !strcmp(str, "double") || !strcmp(str, "float")

|| !strcmp(str, "return") || !strcmp(str, "char") || !strcmp(str, "case") || !strcmp(str, "char")
|| !strcmp(str, "sizeof") || !strcmp(str, "long") || !strcmp(str, "short") || !strcmp(str, "typedef")

|| !strcmp(str, "switch") || !strcmp(str, "unsigned") || !strcmp(str, "void") || !strcmp(str, "static")

|| !strcmp(str, "struct") || !strcmp(str, "goto"))
 return (1);

return (0);

}

// Returns '1' if the string is an INTEGER.
int isInteger(char* str)

{

int i, len = strlen(str); if (len == 0)
return (0);

for (i = 0; i < len; i++) {

if (str[i] != '0' && str[i] != '1' && str[i] != '2' && str[i] != '3' && str[i] != '4' && str[i] != '5'
&& str[i] != '6' && str[i] != '7' && str[i] != '8' && str[i] != '9' || (str[i] == '-' && i > 0))

return (0);

}

return (1);
}

// Returns '1' if the string is a REAL NUMBER.

int isRealNumber(char* str)
{

int i, len = strlen(str);

 int hasDecimal = 0;
 if (len == 0)

return (0);

for (i = 0; i < len; i++) { if (str[i] != '0' && str[i] != '1' && str[i] != '2' && str[i] != '3' && str[i] != '4' && str[i] !=

'5' && str[i] != '6' && str[i] != '7' && str[i] != '8' && str[i] != '9' && str[i] != '.' || (str[i] == '-' && i > 0))
return (0);

if (str[i] == '.')

hasDecimal = 1;
}

return (hasDecimal);

}

// Extracts the SUBSTRING.
char* subString(char* str, int left, int right)

{

 int i;
char* subStr = (char*)malloc(sizeof(char) * (right - left + 2));for (i = left; i <= right; i++) subStr[i - left] = str[i];

subStr[right - left + 1] = '\0';

 return (subStr);
}

// Parsing the input STRING.

void parse(char* str)

{
int left = 0, right = 0;

int len = strlen(str);

while (right <= len && left <= right)
{

if (isDelimiter(str[right]) == 0) right++;

if (isDelimiter(str[right]) == 1 && left == right)
{

if (isOperator(str[right]) == 1)

 printf("'%c' IS AN OPERATOR\n", str[right]);

right++;
left = right;

}

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 12

else if (isDelimiter(str[right]) == 1 && left != right || (right == len && left != right))
 {

char* subStr = subString(str, left, right - 1);

if (isKeyword(subStr) == 1)
printf("'%s' IS A KEYWORD\n", subStr);

else if (isInteger(subStr) == 1)

printf("'%s' IS AN INTEGER\n", subStr);
else if (isRealNumber(subStr) == 1)

printf("'%s' IS A REAL NUMBER\n", subStr);

else if (validIdentifier(subStr) == 1 && isDelimiter(str[right - 1]) == 0)

printf("'%s' IS A VALID IDENTIFIER\n", subStr);
else if (validIdentifier(subStr) == 0 && isDelimiter(str[right - 1]) == 0)

printf("'%s' IS NOT A VALID IDENTIFIER\n",subStr);left = right;

}
}

return;

}
// DRIVER FUNCTION

void main()

{
// maximum length of string is 100 here char str[100] = "int a = c + y; ";

//clrscr();

parse(str); // calling the parse function
}

OUTPUT:

[Viva Questions]

1. What is an Interpreter?

2. What are the other language processors you know?

3. What is the difference between DFA/minimum DFA?

4. Write the difference between the interpreter and Compiler

EXERCISE:

3) Design an DFA to recognize the identifiers, keywords, constants, and

comments of Clanguage?

4) Write a C Program to implement the above DFA.

Signature of faculty

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 13

4. Problem Statement: Design a Lexical analyzer. The lexical analyzer should ignore redundant blanks,

tabs and new lines. It should also ignore comments. Although the syntax specification s those identifiers

canbe arbitrarily long, you may restrict the length to some reasonable Value.

AIM: Write a C/C++program to implement the design of a Lexical analyzer to

recognize the tokens defined by the given grammar.

ALGORITHM/PROCEDURE:

We make use of the following two functions in the process. lookup()–it takes string as argument and

check sits presence in the symbol table. If the string is found the n returns the address else it returns

NULL.

Insert ()– it takes string as its argument and the same is inserted into the symbol table and

the corresponding address is returned.

1. Start

2. Declare an array of characters, an input file to store the input;

3. Read the character from the input file and put it in to character type of variable,say‘c’.

4. If ‘c’ is blank then do nothing.

5. If ‘c’ is new line character line=line+1.

6. If ‘c ’is digit, set token Val, the value assigned for a digit and return the ‘NUMBER’.

7. If ‘c ’is proper token then assign the token value.

8. Print the complete table with

Token entered by the user,

associated token value.

9. Stop

PROGRAM/SOURCECODE:

#include<string.h>
#include<ctype.h>

#include<stdio.h>

void keyword(char str[10])
{

if(strcmp("for",str)==0||strcmp("while",str)==0||strcmp("do",str)==0||strcmp("int",str

)==0||strcmp("float",str)==0||strcmp("char",str)==0||strcmp("double",str)==0||strcmp("static",str)==0||strcmp("swi

tch",str)==0||strcmp("case",str)==0)
 printf("\n%s is a keyword",str);

 else

 printf("\n%s is an identifier",str);
}

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 14

int main()
{

 FILE *f1,*f2,*f3;

 char c,str[10],st1[10];

 int num[100],lineno=0,tokenvalue=0,i=0,j=0,k=0;
 printf("\nEnter the c Program: ");/*gets(st1);*/

 f1=fopen("input","w");

 while((c=getchar())!=EOF)
 putc(c,f1);

 fclose(f1);

 f1=fopen("input","r");
 f2=fopen("identifier","w");

 f3=fopen("specialchar","w");

 while((c=getc(f1))!=EOF)

 {
 if(isdigit(c))

 {

 tokenvalue=c-'0';
 c=getc(f1);

 while(isdigit(c))

 {

 tokenvalue*=10+c-'0';
 c=getc(f1);

 }

 num[i++]=tokenvalue;
 ungetc(c,f1);

 }

 else if(isalpha(c))
 {

 putc(c,f2);

 c=getc(f1);

 while(isdigit(c)||isalpha(c)||c=='_'||c=='$')
 {

 putc(c,f2);

 c=getc(f1);
 }

 putc(' ',f2);

 ungetc(c,f1);
 }

 else if(c==' '||c=='\t')

 printf(" ");

 else if(c=='\n')
 lineno++;

 else

 putc(c,f3);
 }

 fclose(f2);

 fclose(f3);

 fclose(f1);
 printf("\nThe no's in the program are");

 for(j=0; j<i; j++)

 printf("%d",num[j]);
 printf("\n");

 f2=fopen("identifier","r");

 k=0;
 printf("The keywords and identifiersare:");

 while((c=getc(f2))!=EOF)

 {

 if(c!=' ')
 str[k++]=c;

 else

 {

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 15

 str[k]='\0';
 keyword(str);

 k=0;

 }

 }
 fclose(f2);

 f3=fopen("specialchar","r");

 printf("\nSpecial characters are");
 while((c=getc(f3))!=EOF)

 printf("%c",c);

 printf("\n");
 fclose(f3);

 printf("Total no. of lines are:%d",lineno);

 return 0;

}

Output:

Enter the C Program:

a+b*c

Ctrl-D

The no’s in the program

are:

The key words and

identifiers are:

a is an identifier

andterminal b is an

identifier and terminal c

is an identifier and

terminal Special

characters are

:

+

*

Total no.of lines are: 1

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 16

[Viva Questions]

1. What is lexical analyzer?

2. Which compiler is used for lexical analysis?

3. What is the output of Lexical analyzer?

5. Which Finite state machines are used in lexical analyzer design?

6. What is the role of regular expressions, grammars in Lexical Analyzer?

EXERCISE:

1) Designalexicalanalyzertogeneratetokensfortheidentifiers,constants, keywords, and

operators of language.

2) Write a C implementation of the above Lexical Analyzer.

Signature of faculty

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 17

5. Problem Statement: Implement the lexical analyzer using

JLex,flex or other lexical Analyzer generating tools.

AIM: To implement the lexical analyzer using JLex, flex or lex other lexical analyzer generating

tools.

ALGORITHM/PROCEDURE:

Input : LEX specification files for the token

Output: Produces the source code for the Lexical Analyzer with the name lex.yy.c

and displays the tokens from an input file.

1. Start

2. Open a file in text editor

3. Create a Lex specifications file to accept keywords, identifiers, constants,operators

and relational operators in the following format.

a) %{

Definitionofconstant/headerfiles

%}

b) RegularExpressions

%%

Transitionrules

%%

c) AuxiliaryProcedure(main()function)

4. Save file with.lextensione.g. mylex.l

5. Call lextoolonthe

terminale.g.[root@localhost]#lexmylex.l.Thislextoolwillconvert

“.l”file into“.c” languagecode file i.e.,lex.yy.c

6. Compile the file

lex.yy.cusingC/C++compiler.e.g.gcclex.yy.c.Aftercompilationthefilelex. yy.c,the

output file is in a.out

7. Run the file a.out giving an input (text/file)e.g../a.out.

8. Upon processing, the sequence of tokens will be displayed as output.

9. Stop

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 18

LEXSPECDIFICATIONPROGRAM/SOURCECODE(lexprog.l):

// ********* LEX Program to identify Mini language Tokens

*****************//DIGIT [0-

9]LETTER [A-Za-z]

DELIM [\t\n]

WS { DELIM }+

ID {(LETTER)[LETTER/DIGIT]}+

INTEGER {DIGIT}+

%%

{WS} {printf("\n WSspecialcharacters \n");}

{ID} {printf("\nIdentifiers\n");}

{DIGIT} {printf("\nIntgers\n");}

if {printf("\nKeywords\n");}

else {printf("\nkeywords\n");}

">" { printf("\n Relational Operators\n");

}"<"

{printf("\nRelationalOperators\n");}"<

="

{printf("\nRelationalOperators\n");}"=

>"

{printf("\nRelationalOperators\n");}"=

"

{printf("\nRelationalOperators\n");}"!

=" { printf("\n Logical Operators \n");

}"&&" { printf("\n Logical Operators \n");

}"||" {printf("\nLogicalOperators\n");}"!"

{printf("\n Logical Operators \n");

}"+" { printf("\n Arthmetic Operator\n");

}"-" { printf("\n Arthmetic Operator\n");

}"*" { printf("\n Arthmetic Operator\n");

}"/" { printf("\n Arthmetic Operator\n");

}"%"

{printf("\nArthmeticOperator\n");}

%%

intyywrap(){

}

int main()

{

Printf(‘’ Enger the text :’’);

yylex();

return0;
}

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 19

OUTPUT:

[root@localhost]#lex

lexprog.l[root@localhost]#cclex.y

y.c[root@localhost]#./a.outlexprog

[Viva Questions]

1. What is are the functions of a Scanner?

2. What is Token?

3. What is lexeme, Pattern?

4. What is purpose of Lex?

5. What are the other tools used in Lexical Analysis?

EXERCISE:

1) Write a LEX specification program for the tokens of C language

2) Execute the above LEX file using any LEX tools

3) Generate tokens of a simple C program

Signature of faculty

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 20

6. Problem Statement: Design a Predictive Parser for the

following grammar:{E->TE’,E’->+TE’|0,T->FT’,T’-

>*FT’|0,F->(E) |id}

AIM: To write a ‘C’ Program to implement for the Predictive Parser (Non Recursive

Descent-parser)for the given grammar.

Given the parse Table:

 id + * () $

E E->TE’ E->TE’

E’ E’->+TE’ E’->0 E’->0

T T->FT’ T->FT’

T’ T’->0 T’->*FT’ T’->0 T’->0

F F->id F->(E)

ALGORITHM/PROCEDURE:

Input: string w$, Predictive Parsing table M Output:A LeftMostDerivation of the input string if it is

valid, error otherwise.

Step1: Start

Step2: Declare a character arrayw[10]and

ZasanarrayStep3: Enter the string with $at the

end

Step4:

Step5:

if(A(w[z])thenincrementzandcheckfor(B(w[z]))andifsatisfiesincrementzand check

for ‘d’if d is present the n increment and check for (D(w[z]))

if step4issatisfiedthenthestringisacceptedElsestring

is not

Step6: Exit

SOURCECODE:

//***IMPLEMENTATION OF PREDICTIVE/NON-RECURSIVE DESCENT PARSING*****//

#include<stdio.h>

#include<conio.h>

#include<ctype.h>

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 21

char ch;

#define id 0

#define CONST 1

#define mulop 2

#define addop 3

#define op 4

#define cp 5

#define err 6

#define col7

#define size 50

int token;

charlexbuff[size];

int lookahead=0;

int main()

{

clrscr();

printf(" Enter the string :");

gets(lexbuff);

parser();

return 0;

}

parser()

{

if(E())

printf("valid string");

else

printf("invalid string");

getch();

return 0;

}

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 22

E()

{

if(T())

{

if(EPRIME())

return 1;

else

return 0;

}

else

return 0;

}

T()

{

if(F())

{

if(TPRIME())

return 1;

else

return 0;

 }

else

return 0;

 }

EPRIME()

{

token=lexer();

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 23

if(token==addop) {

lookahead++;

if(T())

{

if(EPRIME())

return 1;

else

return 0;

}

else

return 0;

}

else

return 1;

}

TPRIME()

{

token=lexer(); if(token==mulop) {

lookahead++;

if(F())

{

if(TPRIME())

return 1;

else

return 0;

}

else

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 24

return 0;

}

else

return 1;

}

else

F()

{

token=lexer();

if(token==id)

return 1;

else

{

if(token==4)

{

if(E())

{

if(token==5)

return 1;

return 0;

}

else

return 0;

}

else
return 0;

}

}
lexer()

{

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 25

if(lexbuff[lookahead]!='\n')
{

while(lexbuff[lookahead]=='\t') lookahead++;

if(isalpha(lexbuff[lookahead]))

{
while(isalnum(lexbuff[lookahead])) lookahead++;

return(id);

}
else

{

if(isdigit(lexbuff[lookahead]))
{

while(isdigit(lexbuff[lookahead])) lookahead++;

return CONST;

}
else

{

else

if(lexbuff[lookahead]=='+')

{

return(addop);
}

else

{
if(lexbuff[lookahead]=='*')

{

return(mulop);
}

else

{

if(lexbuff[lookahead]=='(')
{

lookahead++;

return(op);
}

else

{
if(lexbuff[lookahead]==')')

{

return(op);

}
else

{

return(err);
}

}

}

}
}

}

}
else

return (col);

}

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 26

 OUTPUT:

Viva Questions:

1. What is a parse rand state the Role of it?

2. Types of parsers? Examples to each

3. What are the Tools available for implementation?

4. How do you calculate FIRST(),FOLLOW() sets used in Parsing Table construction?

EXERCISE:

1. Write a CFG to express the syntax of arithmetic Expressions of C language.

2. Design a PredictiveParsing table to recognize the arithmetic expressions of the C language.

Signature of faculty

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 27

7. Problem Statement: Design a LALR Bottom Up Parser for the given grammar

AIM: To Design and implement an LALR bottomup Parser for checking the syntax of the statements

in the givenlanguage.

ALGORITHM/PROCEDURE/CODE:

1. Writing augmented grammar

2. LR(1) collection of items to be found

3. Defining 2 functions: goto[list of terminals] and action[list of non-terminals] in the

LALR parsing table

LALR BottomUp Parser

<parser.l>

%{

#include<stdio.h>

#include"y.tab.h"

%}
%%

[0-9]+

{yylval.dval=atof(yytext);return

DIGIT;

}

\n|.returnyytext[0];

%%

<parser.y>

%{
/*This YACCspecification file generates the LALR parser for the program considered

in experim ent4.*/

#include<stdio.h>

%}

%union

{

doubledval;

}

%token<dval>DIGIT

%type<dval>expr

%type<dval>term

%type<dval>factor

%%

line:expr'\n' {

;

printf("%g\n",$1);

}

expr: expr'+'term{$$=$1+$3;}

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 28

|term

;

term:term'*'factor{$$=$1 *$3;}

|factor

;

factor:'('expr')'{$$=$2;}

|DIGIT

;

%%

intmain()

{

Print(“EnterAE:”);

yyparse();

}

yyerror(char*s)

{

printf("%s",s);

}

Output:

$lex parser.l

$yacc–dparser.y

$cclex.yy.cy.tab.c –ll–lm

$./a.out

2+3

5.0000

Viva Questions?

1. What is yacc? Are there any other tools available for parse generation?

2. How do you use it?

3. Structure of parser specification program

4. How many ways we can generate the Parser

5. Howa

EXERCISE:

1) Construct LALR parsing table to accept the arithmetic expressions of the C language.

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 29

8. Problem statement: Convert the BNF rules into YACC form and write code to generate

abstract syntax tree.

AIM: To Implement the process of conversion from BNF rules to Yacc form and generate Abstract

Syntax Tree.

ALGORITHM/PROCEDURE:

ALGORITHM:

1. Start

2. Include the header file.

3. In int code.l,declare the variable lie no as integer and assign it to be equal to ‘1’.

4. Start the int code. l with declarative section.

5. In translation rules section define keywords, data types and integer along with their actions .

6. Start the main block. In main block check the statement

1.declarative

2.assignment

3.conditional

4.if and else

5. While assignment.

8. Perform the actions of that particular block.

9. In main program declare the parameters arg c as int end *argv[] as char.

10. In main program open file in read mode.

11. Print the output in a file.

12. End

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 30

PROGRAM:

<int.l>

%{
#include"y.tab.h"

#include<stdio.h>

#include<string.h

>intLineNo=1;

%}
identifier [a-zA-Z][_a-zA- Z0- 9]*number[0-9]+|([0- 9]*\.[0-9]+)

%%
main\(\) return MAIN;

if return IF;
else return ELSE;

while return WHILE;

int|
char|

float

return TYPE ;

{identifier}
{strcpy(yylval.var,yytext);return VAR;}

{number}

{strcpy(yylval.var,yytext);return NUM;}

\<|

\>|

\>=|

\<=|

=={strcpy(yylval.var,yytext);returnRELOP;}

[\t];

\nLineNo++;

.returnyytext[0];

%%

<int.y>

%{

#include<string.h>

#include<stdio.h>

structquad

{

char op[5];char

arg1[10];char

arg2[10];

charresult[10];

}QUAD[30];

structstack

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 31

{

}stk;

int items[100];
inttop;

int Index=0,tIndex=0,StNo,Ind,tInd;externint ;

}

%token<var>NUMVARRELOP

%tokenMAINIFELSEWHILE TYPE

%type<var>EXPRASSIGNMENTCONDITIONIFSTELSESTWHILELOOP

%left'-''+'

%left'*''/'

%% PROGRAM:MAINBL OCK

; BLOCK:'{'CODE'}'

; CODE:BLO CK

|STATEMENTCODE

|STATEMENT

; STATEMENT:DES CT';'

|ASSIGNMENT';'

|CONDST

|WHILEST
; DESCT:TYPEVAR LIST

; VARLIST:VAR','VAR LIST

|VAR

;

ASSIGNMENT:VAR '='EXPR{

strcpy(QUAD[Index].op,"=");

strcpy(QUAD[Index].arg1,$3);

strcpy(QUAD[Index].arg2,"");

strcpy(QUAD[Index].result,$1);

strcpy($$,QUAD[Index++].result);

}

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 32

;

EXPR:EXPR'+'EXPR{AddQuadruple("+",$1,$3,$$);}

|EXPR'-'EXPR{AddQuadruple("-",$1,$3,$$);}

|EXPR'*' EXPR{AddQuadruple("*",$1,$3,$$);}

|EXPR'/'EXPR{AddQuadruple("/",$1,$3,$$);}

|'-'EXPR{AddQuadruple("UMIN",$2,"",$$);}

|'('EXPR')'{strcpy($$,$2);}

|VAR

|NUM

;

CONDST:IF

ST{

Ind=pop();sprintf(QUAD[Ind].result,"%d",Index);

Ind=pop();sprintf(QUAD[Ind].resul t,"%d",Index);

}

|IFSTELSEST

; IFST:IF'('CONDITION')'{

 strcpy(QUAD[Index].op,"==");

strcpy(QUAD[Index].arg1,$3);

strcpy(QUAD[Index].arg2,"FALSE");

strcpy(QUAD[Index].result,"- 1");

push(Index);

I ndex++;

}BLOCK

{

strcpy(QUAD[Index].op,"GOTO");strcpy

(QUAD[Index].arg1,"");

strcpy(QUAD[Index].arg2,"");

strcpy(QUAD[Index].result,"-1");

push(Index);
 Index++;

 };

 ELSEST:ELSE{

tInd=pop();

Ind=pop();

push(tInd);

sprintf(QUAD[Ind].result,"%d",Index);

}BLOCK

{

Ind=pop();sprintf(QUAD[Ind].result,"%d"

,Index);
};

 CONDITION:VARRELOPVAR
` {

AddQuadruple($2,$1,$3,$$);

StNo=Index-1;

}

|VAR

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 33

|NUM

;

WHILEST:WHILEL

OOP{

Ind=pop();sprintf(QUAD[Ind].result,"%d", StNo);

Ind=pop();

sprintf(QUAD[Ind].result,"%d",Index);

WHILELOOP:WHILE'('CONDITION')'

{
strcpy(QUAD[Index].op,"==");

strc py(QUAD[Index].arg1,$3);
 strcpy(QUAD[Index].arg2,"FALSE");strcpy(QUAD[Index].result,"-1");
 push(Index);

 Index++;

}

BLOCK {

strcpy(QUAD[Index].op,"GOTO");

strcpy (QUAD[Index].arg1,"");

strcpy(QUAD[Index].arg2,"");

strcpy(QUAD[Index].result,"-1");

push(Index);
 Index++;
};

%%

Extern FILE* yyin;
int main(intargc,char*argv[])

{ FILE *fp;

int i;

if(argc >1)

{

fp=fopen(argv[1],"r");

if(!fp)

{

printf("\nFilenotfound");

e xit(0);

}

yyin=fp;

}

yyparse();

printf("\n\n\t\t -------------------------- ""\n\t\tPosOperatorArg1Arg2Result""\n\t\t

 ");

for(i=0;i<Index;i++)

{

printf("\n\t\t%d\t%s\t%s\t%s\t

%s",i,QUAD[i].op,QUAD[i].arg1,QUAD[i].arg2,QUAD[i].result);

}

printf("\n\t\t

 ")

;printf("\n\n");

return 0;

}

void push(int data)

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 34

{

stk.top++;if(stk.top==100)

{
printf("\n Stack overflow\n");exit(0);

}

stk.items[stk.top]=data;

}

intpop()

{

int data;

if(stk.top ==-1)

{

printf("\nStackunderflow\n");

exit(0);

}

data=stk.items[stk.top--];

return data;

}

void AddQuadruple(charop[5],chararg1[10],chararg2[10],charresult[10])

{
 strcpy(QUAD[Index].op,op);

 strcpy(QUAD[Index].arg 1,arg1);

 strcpy(QUAD[Index].arg2,arg2);

 sprintf(QUAD [Index].result,"t%d",tIndex++);
 strcpy(result,QUAD[In dex++].result);

}

yyerror()

{

printf("\nErroronlineno:%d",LineNo);

}

Input:
$vi

test.cmai

n()

{

int a,b,c;

if(a<b)

{

a=a+b;

}

while(a<b)

{

a=a+b;

}

if(a<=b)

{

c=a-b;

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 35

}

else

{

c=a+b;

}

}

Output:

$lexint.l

$yacc–dint.y

$gcclex.yy.cy.tab.c–ll–lm

$./a.outtest.c

OUTPUT:

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 36

Viva Questions:

1. What is abstract syntax tree?

2. What is quadruple?

3. What is the difference between Triples and Indirect Triple?

4. State different forms of Three address statements.

5. What are different intermediate code forms?

Signature of faculty

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 37

9. Problem Statement: A program to generate machine code from the abstract syntax

regenerate by the parser.

AIM: To write a C Program to Generate Machine Code from the Abstract Syntax Tree using the

specified machine instruction formats.

ALGORITHM/PROCEDURE/SOURCECODE:

Flow Chart:

id + id * id would have the following syntax tree which is as follows:

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 38

PROGRAM:

#include<stdio.h>

#include<stdlib.h>

#include<string.h

>intlabel[20]; int

no=0;
int main()

{

FILE*fp1,*fp2;

char fname[10],op[10],ch;

charoperand1[8],operand2[8],result[8];

int i=0,j=0;

printf("\nEnter file name of the intermediatecode");

scanf("%s",&f name);

fp1=fopen(fname,"r");

fp2=fopen("target.txt","w");

if(fp1==N ULL||fp2==NULL)

{

printf("\nError opening the file");
exi t(0);

}

while(!feof(fp1))

{

fprintf(fp2,"\n");

fscanf(fp1,"%s",op);

i++;

if(check_label(i))

fprintf(fp2,"\nlabe l#%d",i);

if(strcmp(op,"print")==0)

{

fscanf(fp1,"%s",result);

fprintf(fp2, "\n\tOUT%s",result);

}

if(strcmp(op,"goto")==0)

{

fscanf(fp1,"%s%s",operand1,operand2);

fprintf(fp2,"\n\tJMP%s,label#%s",operand1,operand2);

label[no++]=atoi(operand2);

}

if(strcmp(op,"[]=")==0)

{
fscanf(fp1,"%s%s%s",operand1,operand2,result);

fprintf(fp2,"\n\tSTORE%s[%s],%s",operand1,operand2,result);

}
if(strcmp(op,"uminus")==0)

{

CD LAB A.Y.--2023-24

DEPT.OF CSE Page 39

fscanf(fp1,"%s%s",operand1,result);

fprintf(fp2,"\n\tLOA D-%s,R1",operand1);

fprintf(fp2,"\n\tSTORE R1,%s",result);

}

switch(op[0])

{

case'*':fscanf(fp1,"%s%s%s",operand1,operand2,result);

fpr intf(fp2,"\n\tLOAD",operand1);

fprintf(fp2,"\n \t LOAD %s,R1",operand2);

fprintf(fp2,"\n\tMULR1,R0");

fprintf(fp2,"\n \t STORE R0,%s",result);

break;

case'+':fscanf(fp1,"%s%s%s",operand1,operand2,result);

fprintf(fp2,"\n \t LOAD %s,R0",operand1);

 fprintf(fp2,"\n \t LOAD %s,R1",operand2);

fprintf(fp2,"\n\tADDR1,R0");

 fprintf(fp2,"\n \t STORE R0,%s",result);

break;

case'- ':fscanf(fp1,"%s%s%s",operand1,operand2,result);

fprintf(fp2,"\n \t LOAD %s,R0",operand1);

fprintf(fp2,"\n \t LOAD %s,R1",operand2);

fprintf(fp2,"\n\tSUBR1,R0");

 fprintf(fp2,"\n \t STORE R0,%s",result);

break;

case'/':fscanf(fp1,"%s%s%s",operand1,operand2,result);

fpr intf(fp2,"\n \t LOAD %s,R0",operand1);

fprintf(fp2,"\n \t LOAD %s,R1",operand2);

fprintf(fp2,"\n\tDIVR1,R0");

fprintf(fp2,"\n \t STORE R0,%s",result);

break;

case'%':fscanf(fp1,"%s%s%s",operand1,operand2,result);

fprintf(fp2,"\n \t LOAD%s,R0",operand1);

fprintf(fp2,"\n \t LOAD%s,R1",operand2);

fprintf(fp2,"\n\tDIVR1,R0");

 fprintf(fp2,"\n \t STORER0,%s",result);

break;

case '=':fscanf(fp1,"%s%s",operand1,result);

fprintf(fp2,"\n\t STORE %s%s",operand1,result);

break;

case'>':j++;

fscanf(fp1,"%s %s%s",operand1,operand2,result);

fprintf(fp2,"\n \tLOAD%s,R0",operand1);

fprintf(fp2,"\n\t JGT%s,label#%s",operand2,result);

label[no++]=atoi(res ult);

break;

CD LAB A.Y.--2023-24

case '<':fscanf(fp1,"%s %s
%s",operand1,operand2,result);

fprintf(fp2,"\n \t LOAD %s,R0",operand1);

fprintf(fp2,"\n\t JLT %s, label#%d",operand2,result);

label[no++]=atoi(result);

break;

}

}

fclose(fp2); fclose(fp1);

fp2=fopen("target.t xt","r");

if(fp2==NULL)

{

printf("Erroropeningthefile\n");

exi t(0);

}

do

{

ch=fgetc(fp2);

p rintf("%c",ch);

}while(ch!=EOF);

fclose(fp1);

 return0;

}
int check_label(intk)

{
int i;

for(i=0;i<no;i++)

{

}

return0;

}

if(k==label[i])

return 1;

Input :

$ vi int.txt

= t1 2

[]=a01

[]=a 1 2

[]=a 2 3

*t16 t2

DEPT.OF CSE Page 41

CD LAB A.Y:2023-24

 + a[2] t2 t3

- a[2] t1 t2

/ t3 t2 t2

uminus t2 t2

print t2

goto t2 t3

= t3 99 uminus 25 t2

* t2 t3 t3 uminus t1 t1

+ t1 t3 t4 print t4

Output:

 Enter filename of the intermediate code: int.txt

STORE t1, 2

STORE a[0], 1

STORE a[1], 2

STORE a[2], 3

LOAD t1, R0

LOAD 6, R1

ADD R1, R0

STORE R0, t3

LOAD a[2], R0

LOAD t2, R1

ADD R1,R0

STORE R0,t3

LOAD a[t2],R0

LOAD t1,R1

SUB R1,R0

STORE R0,t2

LOAD t3,R0

LOAD t2,R1

DIV R1,R0

STORE R0,t2

LOAD t2,R1

STORE R1,t2

LOAD t2,R0

JGT 5,

label#11

Label#11: OUT t2

JMP t2, label#13

Label#13: STORE t3, 99

LOAD 25, R1

STORE R1,t2

LOAD t2,R0

LOAD t3,R1

MUL R1,R0

STORE R0,t3

LOAD t1,R1

DEPT.OF CSE Page 42

CD LAB A.Y:2023-24

STORE R1,t1

LOAD t1,R0

LOAD t3,R1

ADD R1,R0

STORE R0,t4

OUT t4

Signature of faculty

DEPT.OF CSE Page43

 1 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 INDEX

S. No Experiment/Topic Page

No.

Remarks

 Outcomes 2

 Software / Hardware Requirements 2

 Introduction about UML 1-32

1 UML Diagram for ATM Transaction System 33-49

2 UML Diagram for Library Management System 50-57

3
UML Diagram for College administration System

58

 2 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

OUTCOMES :

At the end of the Course, the Student will be able to:

 Identify the requirements specification for an intended software system.

 Model the Use case and Class diagrams for the given application or Case study

 Develop the sequence and collaboration diagrams for the given application.

 Build Activity diagram and State Chart diagrams for the given application

 Design Component and Deployment diagrams for the given application.

RECOMMENDED SYSTEM / SOFTWARE REQUIREMENTS:

To execute the experiments, we should have the following hardware /softwares at minimum

1. IBM Rational Rose Star UML

 TEXT BOOKS:

1. Grady Booch, James Rumbaugh, Ivar Jacobson : “The Unified Modeling Language

User Guide”, 2nd Edition, Pearson Education, Reprint 2017.

2. Object Oriented Analysis & Design by Prof .Partha Pratim Das IIT Kharagpur.

3. Erich Gamma, “Design Patterns By Elements of Reusable Object-Oriented

Software”, Pearson Education, 2015.

4. Pascal Roques, “Modeling Software Systems Using UML2”, 1st Edition, WILEY

Dreamtech, 2007.

 3 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

What is the UML?

• The Unified Modeling Language is a family of graphical notations, backed by a single

meta- model, that help in describing and designing software systems, particularly

software systems built using the object-oriented style.‖
• UML first appeared in 1997
• UML is standardized. Its content is controlled by the Object Management Group

(OMG), a consortium of companies.

• Unified

– UML combined the best from object-oriented software modeling

methodologies that were in existence during the early 1990‘s.
– Grady Booch, James Rumbaugh, and Ivor Jacobson are the primary contributors to

UML.
• Modeling

– Used to present a simplified view of reality in order to facilitate the

design and implementation of object-oriented software systems.

– All creative disciplines use some form of modeling as part of the creative process.
– UML is a language for documenting design
– Provides a record of what has been built.
– Useful for bringing new programmers up to speed.

• Language

– UML is primarily a graphical language that follows a precise syntax.

– UML 2 is the most recent version

– UML is standardized. Its content is controlled by the Object Management Group

(OMG), a consortium of companies.

Why We Model

 The importance of modeling

 Four principles of modeling

 Object-oriented modeling

The Importance of Modeling

• A successful software organization is one that consistently deploys quality software

that meets the needs of its users.

• An organization that can develop such software in a timely and predictable fashion,

with an efficient and effective use of resources, both human and material, is one that

has a sustainable business

What, then, is a model? Simply put,

• A model is a simplification of reality.

• A model provides the blueprints of a system.

• A good model includes those elements that have broad effect and omits those minor

elements that are not relevant to the given level of abstraction.

 4 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Why do we model? There is one fundamental reason.

We build models so that we can better understand the system we are developing.

Through modeling, we achieve four aims

1. Models help us to visualize a system as it is or as we want it to be.

2. Models permit us to specify the structure or behavior of a system.
3. Models give us a template that guides us in constructing a system.
4. Models document the decisions we have made.

Modeling is not just for big systems. Even the software equivalent of a dog house can benefit

from some modeling.

We build models of complex systems because we cannot comprehend such a system in its entirety.

Principles of Modeling

Four principles of modeling:

1. The choice of what models to create has a profound influence on how a problem is
attacked and how a solution is shaped.

2. Every model may be expressed at different levels of precision.
3. The best models are connected to reality.
4. No single model is sufficient. Every nontrivial system is best approached through a

small set of nearly independent models.

An Overview of the UML
The UML is a language for

• Visualizing
• Specifying
• Constructing

• Documenting

The UML Is a Language for Documenting

A healthy software organization produces all sorts of artifacts in addition to raw executable code.

These artifacts include (but are not limited to)

• Requirements
• Architecture
• Design
• Source code

• Project plans
• Tests
• Prototypes
• Releases

 5 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Where Can the UML Be Used?

The UML is intended primarily for software-intensive systems. It has been used effectively for

such domains as

• Enterprise information systems
• Banking and financial services
• Telecommunications
• Transportation
• Defense/aerospace
• Retail

• Medical electronics

• Scientific

• Distributed Web-based services

A Conceptual Model of the UML

• A conceptual model needs to be formed by an individual to understand UML.

• UML contains three types of building blocks: things, relationships, and diagrams.

• Things

– Structural things

• Classes, interfaces, collaborations, use cases, components, and nodes.

– Behavioral things
• Messages and states.

– Grouping things
• Packages

– Annotational things

• Notes

• Relationships: Dependency, Association, Generalization and Realization.

• Diagrams: class, object, use case, sequence, collaboration, statechart, activity,

component and deployment.

Building Blocks of the UML:

The vocabulary of the UML encompasses three kinds of building blocks:
1. Things
2. Relationships

3. Diagrams

Things in the UML

There are four kinds of things in the UML:
1. Structural things
2. Behavioral things
3. Grouping things
4. Annotational things

 6 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Structural Things

• Structural things are the nouns of UML models. These are the mostly static parts of a

model, representing elements that are either conceptual or physical. In all, there are

seven kinds of structural things.

• Classes
• Interface
• Cases
• Active Classes

• Components

• Nodes

• Collaborations
Classes:
a class is a description of a set of objects that share the same attributes, operations,

relationships, and semantics. A class implements one or more interfaces. Graphically, a class

is rendered as a rectangle, usually including its name, attributes, and operations

Interfaces
• an interface is a collection of operations that specify a service of a class or component.

An interface rarely stands alone. Rather, it is typically attached to the class or component

that realizes the interface

Collaborations:
• A collaboration defines an interaction. These collaborations therefore represent the

implementation of patterns that make up a system. Graphically, a collaboration is

rendered as an ellipse with dashed lines, usually including only its name

 7 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Use Cases:

• A use case is realized by a collaboration. Graphically, a use case is rendered as an

ellipse with solid lines, usually including only its name

Active Classes:

• An active class is rendered just like a class, but with heavy lines, usually including

its name, attributes, and operations

Components:

• A component typically represents the physical packaging of otherwise logical

elements, such as classes, interfaces, and collaborations. Graphically, a component is

rendered as a rectangle with tabs, usually including only its name.

 8 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Nodes:

• A node is a physical element that exists at run time and represents a computational

resource, generally having at least some memory and, often, processing capability.

• A set of components may reside on a node and may also migrate from node to node.

Graphically, a node is rendered as a cube, usually including only its name.

Behavioral Things:

Behavioral things are the dynamic parts of UML models. These are the verbs of a model,

representing behavior over time and space. In all, there are two primary kinds of behavioral things.

1. Messages
2. States

Messages:

• An interaction is a behavior that comprises a set of messages exchanged among a set of

objects within a particular context to accomplish a specific purpose. Graphically, a

message is rendered as a directed line, almost always including the name of its

operation.

display

States:

• A state machine is a behavior that specifies the sequences of states an object or an

interaction goes through during its lifetime in response to events, together with its

responses to those events.

 9 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Grouping Things:

• Grouping things are the organizational parts of UML models. These are the boxes into

which a model can be decomposed. There is one primary kind of grouping thing, namely,

packages.

Packages:

• A package is a general-purpose mechanism for organizing elements into groups.

Graphically, a package is rendered as a tabbed folder, usually including only its name

and, sometimes, its contents

Annotational Things:

• Annotational things are the explanatory parts of UML models. These are the comments

you may apply to describe, illuminate, and remark about any element in a model.

• There is one primary kind of annotation thing, called a note. A note is simply a symbol

for rendering constraints and comments attached to an element or a collection of

elements.

Relationships in the UML

There are four kinds of relationships in the UML:

1. Dependency 2. Association 3. Generalization 4. Realization

Dependency is a semantic relationship between two model elements in which a change to one

element (the independent one) may affect the semantics of the other element (the dependent

one). Graphically, a dependency is rendered as a dashed line, possibly directed, and occasionally

including a label.

 10 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Association is a structural relationship among classes that describes a set of links, a link being

a connection among objects that are instances of the classes.

Graphically, an association is rendered as a solid line, possibly directed, occasionally including a

label, and often containing other adornments, such as multiplicity and end names

Generalization is a specialization/generalization relationship in which the specialized element

(the child) builds on the specification of the generalized element (the parent). The child shares

the structure and the behavior of the parent. Graphically, a generalization relationship is rendered

as a solid line with a hollow arrowhead pointing to the parent.

Realization is a semantic relationship between classifiers, wherein one classifier specifies a contract

that another classifier guarantees to carry out. generalization and a dependency relationship.

UML Diagrams

• A diagram is the graphical presentation of a set of elements, most often rendered as a

connected graph of vertices (things) and paths (relationships).
• A diagram represents an elided view of the elements that make up a system.
• In theory, a diagram may contain any combination of things and relationships.

• In practice, a small number of common combinations arise, which are consistent with

the five most useful views that comprise the architecture of a software intensive system

The UML includes Nine kinds of diagrams:

1. Class diagram
2. Object diagram
3. Use case diagram
4. Sequence diagram
5. Collaboration diagram
6. State chart diagram
7. Activity diagram
8. Component diagram
9. Deployment diagram

1. Class diagram shows a set of classes, interfaces, and collaborations and their

relationships. These diagrams are the most common diagram found in modeling object-

oriented systems. Class diagrams address the static design view of a system. Class

diagrams that include active classes address the static process view of a system.

 11 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

2. Object diagram shows a set of objects and their relationships. Object diagrams represent static

snapshots of instances of the things found in class diagrams. These diagrams address the static

design view or static process view of a system as do class diagrams.

3. Use case diagram shows a set of use cases and actors (a special kind of class) and their

relationships. Use case diagrams address the static use case view of a system.

4. Sequence diagram is an interaction diagram that emphasizes the time-ordering of messages;

5. Collaboration diagram a communication diagram is an interaction diagram that emphasizes the

structural organization of the objects or roles that send and receive messages.

6. Statechart diagram shows a state machine, consisting of states, transitions, events, and activities.

A state diagrams shows the dynamic view of an object.

7. Activity diagram shows the structure of a process or other computation as the flow of control and

data from step to step within the computation. Activity diagrams address the dynamic view of a

system.

8. Component diagram is shows an encapsulated class and its interfaces, ports, and internal structure

consisting of nested components and connectors. Component diagrams address the static design

implementation view of a system.

9. Deployment diagram shows the configuration of run-time processing nodes and the components

that live on them. Deployment diagrams address the static deployment view of an architecture

Class Diagram

Class diagram is a diagram that shows a set of classes, interfaces, and collaborations and their

relationships. Class diagrams address the static design view or the static process view of the system.

Graphically it is represented as follows.

Classes

• A Class is a description of set of objects that share same attributes, operations, relationships and

semantics .
• Graphically, a class is rendered as a rectangle

Name
• Every class must have a name that distinguishes it from other classes. A name is a textual string.
• That name alone is known as a simple name;

• path name is the class name prefixed by the name of the package in which that class lives.

 Attributes

• An attribute is a named property of a class that describes range of values that instances of the

property may hold.
• A class may have any number of attributes or no attributes at all. An attribute
• represents some property of the thing you are modeling that is shared by all objects of that class.

• Graphically, attributes are listed in a compartment just below the class name.

• Attributes may be drawn showing only their names,

 12 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

further specify an attribute by stating its class and possibly a default initial value

Operations

• An operation is the implementation of a service that can be requested from any object of the class

to affect behavior.

• An operation is an abstraction of something you can do to an object and that is shared by all

objects of that class.
• A class may have any number of operations or no operations at all.
• Operations may be drawn showing only their names.

 13 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Example :

Fig: Class diagram for Simple Banking System

Object Diagram

 Object diagrams are derived from class diagrams so object diagrams are dependent upon class

diagrams.

 Object diagrams represent an instance of a class diagram. The basic concepts are similar for class

diagrams and object diagrams. Object diagrams also represent the static view of a system but this

static view is a snapshot of the system at a particular moment.

 Object diagrams are used to render a set of objects and their relationships as an instance.

 Object Diagrams use real world examples to depict the nature and structure of the system at a

particular point in time.

The following diagram is an example of an object diagram. It represents the Order management system

which we have discussed in the chapter Class Diagram. The following diagram is an instance of the system

at a particular time of purchase. It has the following objects.

 Customer

 Order

 SpecialOrder

 NormalOrder

 14 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Now the customer object (C) is associated with three order objects (O1, O2, and O3). These order objects

are associated with special order and normal order objects (S1, S2, and N1). The customer has the

following three orders with different numbers (12, 32 and 40) for the particular time considered.

Class vs. Object diagram

Serial

No.

Class Diagram Object Diagram

1. It depicts the static view of a system. It portrays the real-time behavior of

a system.

2. Dynamic changes are not included in the

class diagram.

Dynamic changes are captured in

the object diagram.

3. The data values and attributes of an

instance are not involved here.

It incorporates data values and

attributes of an entity.

4. The object behavior is manipulated in the

class diagram.

Objects are the instances of class

UsecaseDiagram

 Use Case diagram shows a set of use cases and actors (a special kind of class) and their

relationships.

 These diagrams address the static use case view of a system. Graphically it is represented as

follows

It consists of

 Usecases

 Actors

 Communication Links of a particular system.

 Actor

 Someone interacts with use case (system function).

 Named by noun.

 Actor plays a role in the business

 Similar to the concept of user, but a user can play different roles

 For example:

 15 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 A prof. can be instructor and also researcher

 plays 2 roles with two systems

 Actor triggers use case(s).

 Actor has a responsibility toward the system (inputs), and Actor has expectations from the system

(outputs).

 Use Case

 System function (process - automated or manual)

 Named by verb + Noun (or Noun Phrase).

 i.e. Do something

 Each Actor must be linked to a use case, while some use cases may not be linked to actors.

Communication Link

 The participation of an actor in a use case is shown by connecting an actor to a use case by a solid

link.

 Actors may be connected to use cases by associations, indicating that the actor and the use case

communicate with one another using messages.

Structuring Use Case Diagram with Relationships

Use cases share different kinds of relationships. Defining the relationship between two use cases is the

decision of the software analysts of the use case diagram. A relationship between two use cases is basically

modeling the dependency between the two use cases. The reuse of an existing use case by using different

types of relationships reduces the overall effort required in developing a system. Use case relationships are

listed as the following:

Extends

 Indicates that an "Invalid Password" use case may include (subject to specified in the extension) the

behavior specified by base use case "Login Account".

 Depict with a directed arrow having a dotted line. The tip of arrowhead points to the base use case

and the child use case is connected at the base of the arrow.

 The stereotype "<<extends>>" identifies as an extend relationship

 16 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Include

 When a use case is depicted as using the functionality of another use case, the relationship between

the use cases is named as include or uses relationship.

 A use case includes the functionality described in another use case as a part of its business process

flow.

 A uses relationship from base use case to child use case indicates that an instance of the base use case

will include the behavior as specified in the child use case.

 An include relationship is depicted with a directed arrow having a dotted line. The tip of arrowhead

points to the child use case and the parent use case connected at the base of the arrow.

 The stereotype "<<include>>" identifies the relationship as an include relationship.

 Generalization

 A generalization relationship is a parent-child relationship between use cases.

 The child use case is an enhancement of the parent use case.

 Generalization is shown as a directed arrow with a triangle arrowhead.

 The child use case is connected at the base of the arrow. The tip of the arrow is connected to the

parent use case.

Example of Use case diagram for Online Shopping

 17 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Sequence Diagram

Sequence diagram are interaction diagrams. This diagram emphasizes the time- ordering of messages.

These diagrams address the dynamic view of a system.

 Sequence Diagram displays the time sequence of the objects participating in the interaction. This consists

of the vertical dimension (time) and horizontal dimension (different objects).Graphically it is

represented as follows.

 the interaction that takes place in a collaboration that either realizes a use case or an operation

(instance diagrams or generic diagrams)

 high-level interactions between user of the system and the system, between the system and other

systems, or between subsystems (sometimes known as system sequence diagrams)

Actor

 a type of role played by an entity that

interacts with the subject (e.g., by exchanging

signals and data)

 external to the subject (i.e., in the sense that

an instance of an actor is not a part of the

instance of its corresponding subject).

 represent roles played by human users,

external hardware, or other subjects.

Note that:

 An actor does not necessarily represent a

specific physical entity but merely a

particular role of some entity

 A person may play the role of several

different actors and, conversely, a given actor

may be played by multiple different person.

Lifeline

 A lifeline represents an individual participant

in the Interaction.

 18 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Activations

 A thin rectangle on a lifeline) represents the

period during which an element is performing an

operation.

 The top and the bottom of the of the rectangle

are aligned with the initiation and the completion

time respectively

Call Message

 A message defines a particular communication

between Lifelines of an Interaction.

 Call message is a kind of message that represents

an invocation of operation of target lifeline.

Return Message

 A message defines a particular communication

between Lifelines of an Interaction.

 Return message is a kind of message that

represents the pass of information back to the

caller of a corresponded former message.

Self Message

 A message defines a particular communication

between Lifelines of an Interaction.

 Self message is a kind of message that represents

the invocation of message of the same lifeline.

Recursive Message

 A message defines a particular communication

between Lifelines of an Interaction.

 Recursive message is a kind of message that

represents the invocation of message of the same

lifeline. It's target points to an activation on top

 19 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

of the activation where the message was invoked

from.

Create Message

 A message defines a particular communication

between Lifelines of an Interaction.

 Create message is a kind of message that

represents the instantiation of (target) lifeline.

Destroy Message

 A message defines a particular communication

between Lifelines of an Interaction.

 Destroy message is a kind of message that

represents the request of destroying the lifecycle

of target lifeline.

Duration Message

 A message defines a particular communication

between Lifelines of an Interaction.

 Duration message shows the distance between

two time instants for a message invocation.

 20 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Example: Sequence diagram for Buying a product use case in a E-commerce website

5 Collaboration Diagram

Collaboration diagram are also interaction diagrams. These diagrams emphasizes the structural

organization of the objects that send and receive messages. These diagrams address the dynamic

view of a system. Collaboration Diagram displays an interaction organized around the objects and

their links to one another. Numbers are used to show the sequence of messages. Graphically it is

represented as follows:-

Notations of Collaboration Diagram

Objects

An object is represented by an object symbol showing the name of the object and its class underlined,

separated by a colon:

Object_name : class_name

You can use objects in collaboration diagrams in the following ways:

 Each object in the collaboration is named and has its class specified

 Not all classes need to appear

 There may be more than one object of a class

 21 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 An object’s class can be unspecified. Normally you create a collaboration diagram with

 objects first and specify their classes later.

 The objects can be unnamed, but you should name them if you want to discriminate different

objects of the same class.

Actors

Normally an actor instance occurs in the collaboration diagram, as the invoker of the interaction. If you

 have several actor instances in the same diagram, try keeping them in the periphery of the diagram.

 Each Actor is named and has a role

 One actor will be the initiator of the use case

Links

Links connect objects and actors and are instances of associations and each link corresponds to an

 association in the class diagram

Links are defined as follows:

 A link is a relationship among objects across which messages can be sent. In collaboration

 diagrams, a link is shown as a solid line between two objects.

 An object interacts with, or navigates to, other objects through its links to these objects.

 A link can be an instance of an association, or it can be anonymous, meaning that its

 association is unspecified.

 Message flows are attached to links, see Messages.

Messages

A message is a communication between objects that conveys information with the expectation that

activity will ensue. In collaboration diagrams, a message is shown as a labeled arrow placed near a link.

 The message is directed from sender to receiver

 The receiver must understand the message

 The association must be navigable in that direction

 22 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

6. State chart Diagram

State chart diagram shows a state machine, consisting of states, transitions, events and activities.

These diagrams address the dynamic view of the system. State Chart diagram displays the

sequences of states that an object of an interaction goes through during its life in response to

received stimuli, together with its responses and actions.

 A state diagram is used to represent the condition of the system or part of the system at

finite instances of time.

 It’s a behavioral diagram and it represents the behavior using finite state transitions. State

diagrams are also referred to as State machines and State-chart Diagrams.

 These terms are often used interchangeably. So simply, a state diagram is used to model

the dynamic behavior of a class in response to time and changing external stimuli. We can

say that each and every class has a state but we don’t model every class using State

diagrams. We prefer to model the states with three or more states.

Uses of state chart diagram –

 We use it to state the events responsible for change in state (we do not show what processes

cause

 those events).

 We use it to model the dynamic behavior of the system .

 To understand the reaction of objects/classes to internal or external stimuli.

Firstly let us understand what are Behavior diagrams?

There are two types of diagrams in UML :

1.Structure Diagrams – Used to model the static structure of a system, for example- class

diagram, package diagram, object diagram, deployment diagram etc.

2.Behavior diagram – Used to model the dynamic change in the system over time. They are used

to model and construct the functionality of a system. So, a behavior diagram simply guides us

through the functionality of the system using Use case diagrams, Interaction diagrams, Activity

diagrams and State diagrams.

Difference between state diagram and flowchart :

The basic purpose of a state diagram is to portray various changes in state of the class and not the

processes or commands causing the changes. However, a flowchart on the other hand portrays the

processes or commands that on execution change the state of class or an object of the class.

 Basic components of a statechart diagram –

1. Initial state – We use a black filled circle represent the initial state of a System or a class.

Figure – initial state notation

2. Transition – We use a solid arrow to represent the transition or change of control from one

state to another. The arrow is labelled with the event which causes the change in state.

Figure – transition

 23 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

3. State – We use a rounded rectangle to represent a state. A state represents the conditions or

circumstances of an object of a class at an instant of time.

Figure – state notation

4. Fork – We use a rounded solid rectangular bar to represent a Fork notation with incoming arrow

from the parent state and outgoing arrows towards the newly created states. We use the fork

notation to represent a state splitting into two or more concurrent states.

Figure – a diagram using the fork notation

5. Join – We use a rounded solid rectangular bar to represent a Join notation with incoming arrows

from the joining states and outgoing arrow towards the common goal state. We use the join

notation when two or more states concurrently converge into one on the occurrence of an event

or events.

Figure – a diagram using join notation

6. Self transition – We use a solid arrow pointing back to the state itself to represent a self

transition. There might be scenarios when the state of the object does not change upon the

occurrence of an event. We use self transitions to represent such cases.

 24 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Figure – self transition notation

7. Composite state – We use a rounded rectangle to represent a composite state also.We represent

a state with internal activities using a composite state.

Figure – a state with internal activities

8. Final state – We use a filled circle within a circle notation to represent the final state in a state

machine diagram.

Figure – final state notation

Steps to draw a state chart diagram –

1. Identify the initial state and the final terminating states.

2. Identify the possible states in which the object can exist (boundary values corresponding to

different attributes guide us in identifying different states).

3. Label the events which trigger these transitions.

 25 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Example – state chart diagram for an online ordering system

7 .Activity Diagram

Activity diagram is a special kind of a state chart diagram that shows the flow from activity to

activity within a system. These diagrams address dynamic view of a system. Activity Diagram

displays a special

state diagram where most of the states are action states and most of the transitions are triggered by

completion of the actions in the source states. Graphically it is represented as follows:-

The purpose of an activity diagram can be described as −

 Draw the activity flow of a system.

 Describe the sequence from one activity to another.

 Describe the parallel, branched and concurrent flow of the system.

 26 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Activity Diagram Notation Summary

Notation Description UML Notation

Activity

Is used to represent a set of actions

Action

A task to be performed

Control Flow

Shows the sequence of execution

Object Flow

Show the flow of an object from one activity (or action) to another

activity (or action).

Initial Node

Portrays the beginning of a set of actions or activities

Activity Final Node

Stop all control flows and object flows in an activity (or action)

 27 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Object Node

Represent an object that is connected to a set of Object Flows

Decision Node

Represent a test condition to ensure that the control flow or object

flow only goes down one path

Merge Node

Bring back together different decision paths that were created using

a decision-node.

Fork Node

Split behavior into a set of parallel or concurrent flows of activities

(or actions)

Join Node

Bring back together a set of parallel or concurrent flows of activities

(or actions).

 28 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Swimlane and Partition

A way to group activities performed by the same actor on an

activity diagram or to group activities in a single thread

8. ComponentDiagram

Component diagram shows the organizations and dependencies among a set of components.

These diagrams address the static implementation of view of a system. Component Diagram displays

the high level packaged structure of the code itself. Dependencies among components are shown,

including source code components, binary code components, and executable components. Some

components exist at compile time, at link time, at run times well as at more than one time.

 Graphically it is represented as follows

 29 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 30 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 Example: Component Diagram of Library Management System.

8. Deployment Diagram

Deployment diagram shows the configuration of run-time processing nodes and the components that

live on them. These diagrams address the static deployment view of architecture. Deployment

Diagram displays the configuration of run-time processing elements and the software components,

processes,and objects that live on them. Software component instances represent run-time

manifestations of code.

The deployment diagram consist of the following notations:

1. A component

2. An artifact

3. An interface

4. A node

 31 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

How to draw a Deployment Diagram?

The deployment diagram portrays the deployment view of the system. It helps in visualizing the topological

view of a system. It incorporates nodes, which are physical hardware. The nodes are used to execute the

artifacts. The instances of artifacts can be deployed on the instances of nodes.

Since it plays a critical role during the administrative process, it involves the following parameters:

1. High performance

2. Scalability

3. Maintainability

4. Portability

5. Easily understandable

One of the essential elements of the deployment diagram is the nodes and artifacts. So it is necessary to

identify all of the nodes and the relationship between them. It becomes easier to develop a deployment

diagram if all of the nodes, artifacts, and their relationship is already known.

 Dependency

 Association relationships.

 May also contain notes and constraints.

 32 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Deployment Diagram for banking system

 33 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Case Study 1: Automatic Teller Machine(ATM)

Description of ATM System

The software to be designed will control a simulated automated teller machine (ATM) having a magnetic stripe

reader for reading an ATM card, a customer console (keyboard and display) for interaction with the customer,

a slot for depositing envelopes, a dispenser for cash, a printer for printing customer receipts, and a key-

operated switch to allow an operator to start or stop the machine. The ATM will communicate with the bank’s

computer over an appropriate communication link. (The software on the latter is not part of the requirements

for this problem.)

The ATM will service one customer at a time. A customer will be required to insert an ATM card and enter a

personal identification number (PIN) – both of which will be sent to the bank for validation as part of each

transaction. The customer will then be able to perform one or more transactions. The card will be retained in the

machine until the customer indicates that he/she desires no further transactions, at which point it will be

returned – except as noted below.

The ATM must be able to provide the following services to the customer:

1. A customer must be able to make a cash withdrawal from any suitable account linked to the

card. Approval must be obtained from the bank before cash is dispensed.

2. A customer must be able to make a deposit to any account linked to the card, consisting of

cash and/or checks in an envelope. The customer will enter the amount of the deposit into the

ATM, subject to manual verification when the envelope is removed from the machine by an

operator. Approval must be obtained from the bank before physically accepting the envelope.

3. A customer must be able to make a transfer of money between anytwo accounts linked to the

card.

4. A customer must be able to make a balance inquiry of any account linked to thecard.

5. A customer must be able to abort a transaction in progress bypressing the Cancel key instead

of responding to a request from the machine.

The ATM will communicate each transaction to the bank and obtain verification that it was allowed by the

bank. Ordinarily, a transaction will be considered complete by the bank once it has been approved. In the case

of a deposit, a second message will be sent to the bank indicating that the

 34 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

customer has deposited the envelope. (If the customer fails to deposit the envelope within the timeout period,

or presses cancel instead, no second message will be sent to the bank and the deposit will not be credited to the

customer.)

If the bank determines that the customer‟s PIN is invalid, the customer will be required to re-enter the PIN

before a transaction can proceed. If the customer is unable to successfully enter the PIN after three tries, the

card will be permanently retained by the machine, and the customer will have to contact the bank to get it

back.

If a transaction fails for any reason other than an invalid PIN, the ATM will display an explanation ofthe

problem, and will then ask the customer whether he/she wants to do another transaction.

The ATM will provide the customer with a printed receipt for each successful transaction, showing the date,

time, machine location, type of transaction, account(s), amount, and ending and available balance(s) of the

affected account (“to” account for transfers).

The ATM will have a key-operated switch that will allow an operator to start and stop the servicing of

customers. After turning the switch to the “on” position, the operator will be required to verify and enter the

total cash on hand. The machine can only be turned off when it is not servicing a customer.

When the switch is moved to the “off” position, the machine will shut down, so that the operator may

remove deposit envelopes and reload the machine with cash, blank receipts, etc

 35 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

CLASS DIAGRAM

 AIM: To design and implement ATM system through Class Diagram

Class Diagram:- Class diagrams describe the static structure of a system, or how it is structured rather than how it

behaves. These diagrams contain the following elements:

1. Classes , which represent entities with common characteristics or features. These features include attributes,

operations, and associations.

2. Associations , which represent relationships that relate two or more other classes where the relationships have

common characteristics or features. These features include attributes and operations.

 36 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

USE CASE DIAGRAM

For Function: Use case, Sequence, Collaboration/Communcation

Use Case Diagram: Use case diagrams describe the functionality of a system and users of the system.

 They contain the following elements:

1. Actors , which represent users of a system, including human users and other systems

2. Use cases , which represent functionality or services provided by a system to users Here, is a use case diagram

 for the ATM System.

 37 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

INTERACTIONDIAGRAMS

We have two types of interaction diagrams in UML. One is sequence diagram and the other is a

collaboration diagram. The sequence diagram captures the time sequence of message flow from one object to

another and the collaboration diagram describes the organization of objects in a system taking part in the

message flow.

So the following things are to be identified clearly before drawing the interaction diagram:

1. Objects taking part in the interaction.

2. Message flows among the objects.

3. The sequence in which the messages are flowing.

4. Object organization.

Purpose:

1. To capture dynamic behavior of a system.

2. To describe the message flow in the system.

3. To describe structural organization of the objects.

4. To describe interaction among objects.

Contents of a Sequence Diagram

Objects

Focus of controlMessages

Life line

Contents of a Collaboration Diagram

Objects Links Messages

 38 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Sequence Diagram:

Sequence diagrams typically show the flow of functionality through a use case, and consist of the following

components:

1. Actors , involved in the functionality

2. Objects , that a system needs to provide the functionality

3. Messages , which represent communication between objects Here, is an example of Sequence diagram for

 withdrawing amount from ATM.

Procedure for drawing Sequence Diagram

Step1: First An actor is created and named as user or Customer

Step2: Secondly an object is created for Atm.

Step3: Timelines and lifelines are created automatically for them.

Step4: In sequence diagram interaction is done through time ordering of messages. So appropriate messages

are passed between user and ATM is as shown in the figure.

Withdrawal UseCase

A withdrawal transaction asks the customer to choose a type of account to withdraw from (e.g. checking) from a

menu of possible accounts, and to choose an amount from a menu of possible amounts. The system verifies

that it has sufficient money on hand to satisfy the request before sending the transaction to the bank. (If

not, the customer is informed and asked to enter a different amount.) If the transaction is approved by the bank,

the appropriate amount of cash is dispensed by the machine before it issues a receipt. A withdrawal transaction

can be cancelled by the customer pressing the Cancel key any time prior to choosing the amount.

SEQUENCE DIAGRAM:

Sequence diagrams typically show the flow of functionality through a use case, and consist of the following

components:

1. Actors , involved in the functionality

2. Objects , that a system needs to provide the functionality

3. Messages , which represent communication between objects Here, is an example of Sequence diagram for

withdrawing amount from ATM

 39 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Fig: Sequence diagram for Withdrawal UseCase

Deposit UseCase

A deposit transaction asks the customer to choose a type of account to deposit to (e.g. checking) from a menu of

possible accounts, and to type in amount on the keyboard. The transaction is initially sent tothe bank to verify

that the ATM can accept a deposit from this customer to this account. If the

transaction is approved, the machine accepts an envelope from the customer containing cash and/or checks

before it issues a receipt. Once the envelope has been received, a second message is sent to the bank, to confirm

that the bank can credit the customer‟s account – contingent on manual verification of the deposit envelope

contents by an operator later.

A deposit transaction can be cancelled by the customer pressing the Cancel key any time prior to inserting the

envelope containing the deposit. The transaction is automatically cancelled if the customer fails to insert the

envelope containing the deposit within a reasonable period of time after being asked to do so.

 40 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Inquiry Use Case

An inquiry transaction asks the customer to choose a type of account to inquire about from a menu of possible

accounts. No further action is required once the transaction is approved by the bank before printing the receipt.

An inquiry transaction can be cancelled by the customer pressing the Cancel key any time prior to choosing the

account to inquire about.

Validate User Usecase:

This use case is for validate the user i.e. check the pin number, when the bank reports that the customer‟s

transaction is disapproved due to an invalid PIN. The customer is required to re-enter the PIN and the original

request is sent to the bank again. If the bank now approves the transaction, or disapproves it for some other

reason, the original use case is continued; otherwise the process of re- entering the PIN is repeated. Once the PIN

is successfully re-entered

If the customer fails three times to enter the correct PIN, the card is permanently retained, a screen is displayed

informing the customer of this and suggesting he/she contact the bank, and the entire customer session is

aborted.

Print Bill usecase

This usecase is for printing corresponding bill after transactions (withdraw or deposit, or balance enquiry,

transfer) are completed.

Manage Account

This use case is for updating corresponding user accounts after transactions (withdraw or deposit or transfer)

are completed.

RESULT:

Inferences:

2. Identification of use cases.

3. Identification of actors.

 41 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Sequence Diagram for Deposit Money or Cash Use Case

 42 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Collaboration Diagram for ATM

A Communication or Collaboration diagram, as shown is a directed graph that uses objects and actors as graph nodes.

The focus of the collaboration diagram is on the roles of the objects as they interact to realize a system function.

Directional links are used to indicate communication between objects. These links are labeled using appropriate

messages. Each message is prefixed with a sequence number indicating the time ordering needed to realize the system

function

Collaboration Diagram for Withdraw Money

Example for Cash Deposit or Deposit Money

 43 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

State Chart and Activity Diagram

For behavior: State, Activity Diagram State Diagram:- State transition diagrams provide a way to model the various

states in which an object can exist. While the class diagram show a static picture of the classes and their relationships,

state transition diagrams model the dynamic behavior of a system in response to external events (stimuli).

State transition diagrams consist of the following:

1. States , which show the possible situations in which an object can find itself

2. Transitions , which show the different events which cause a change in the state of an object.

Here, is an example of the state diagram for the session of ATM

Purpose:

Following are the main purposes of using State chart diagrams:

1. To model dynamic aspect of a system.

2. To model life time of a reactive system.

3. To describe different states of an object during its life time.

4. Defines a state machine to model states of an object.

 44 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Procedure:-

Step1: First after initial state control undergoes transition to ATM screen.

Step2: After inserting card it goes to the state wait for pin.

Step3: After entering pin it goes to the state account verification.

Step4:. In this way it undergoes transitions to various states and finally reaches the ATM screen state as shown

in the fig.

 45 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Activity Diagram

Activity Diagram:- Activity diagrams describe the activities of a class. They are similar to state transition diagrams

and use similar conventions, but activity diagrams describe the behavior/states of a class in response to internal

processing rather than external events.

They contain the following elements:

1. Swimlanes , which delegate specific actions to objects within an overall activity

2. Action States , which represent uninterruptible actions of entities, or steps in the execution of an algorithm

3. Action Flows , which represent relationships between the different action states on an entity

4. Object Flows , which represent utilization of objects by action states, or influence of action states on objects.

Following are the examples of Login, Withdraw Activity Diagrams.

Activity Diagram for Login into ATM using card

Activity Diagram for withdraw money from ATM Machine

 46 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 47 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 COMPONENT DIAGRAM for ATM System.

To design and implement Component diagram for ATM System.

 Component Diagram
Component diagrams are used to model physical aspects of a system. Physical aspects are the elements like

executables, libraries, files, documents etc which resides in a node. So component diagrams are used to visualize

the organization and relationships among components in a system. These diagrams are also used to make

executable systems.

Purpose:

Component diagrams can be described as a static implementation view of a system. Static implementation

represents the organization of the components at a particular moment. A single component diagram cannot

represent the entire system but a collection of diagrams are used to represent the whole.

Before drawing a component diagram the following artifacts are to be identified clearly:

• Files used in the system.

• Libraries and other artifacts relevant to the application.

• Relationships among the artifacts.

• Now after identifying the artifacts the following points needs to be followed:

 48 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

• Use a meaningful name to identify the component for which the diagram is to be drawn.

• Prepare a mental layout before producing using tools.

• Use notes for clarifying important points.

Contents

Components, Interfaces, Relationships

Procedure:-

Step1: First user component is created.

Step2: ATM system package is created.

Step3: In it various components such as withdraw money, deposit money, check balance,
 transfer money etc. are created.

Step4: Association relationship is established between user and other components.

Fig: Component Diagram for ATM

 49 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 DEPLOYMENT DIAGRAM
AIM: To design and implement ATM System through Deployment diagram.

Purpose:

Deployment diagrams are used to visualize the topology of the physical components of a system where the

software components are deployed. So deployment diagrams are used to describe the static deployment view of a

system. Deployment diagrams are used for describing the hardware components where software components are

deployed. Component diagrams and deployment diagrams are closely related. Component diagrams are used to

describe the components and deployment diagrams shows how they are deployed in hardware.

Contents: Nodes, Dependency & Association relationships

Procedure:-

Step1: First user node is created

Step2: various nodes withdraw money, deposit money, and check balance, transfer money etc. are created.

Step4: Association relationship is established between user and other nodes.

Step5: Dependency is established between deposit money and check balance.

 Deployment Diagram for ATM system

 50 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

CASE STUDY 2: LIBRARY MANAGEMENT SYSTEM

The Library Management application will help to manage the issuing of books, students, etc.

It allows the library owner to manage the day-to-day process of a book issuing conveniently.

Users of Library Management System

The users of the College Library Management System Sequence Diagram are the following:

 Librarian: The school librarians will be the ones to use the system most of the time. They

will monitor the books from time to time and will cater to the borrowing and returning of

books. They were also responsible for all the activities related to the library.

 Book Borrowers: Book borrowers were not just the students but also the professors or

instructors. They will also have access to the system and to do that, they will have to log into

the system. This will help the librarian and the admin monitor the book borrowers.

 Admin: The Library Management System can be a stand-alone project or a part of a bigger
project. Nevertheless, it always has the admin which can access all of the library

information. This is done when there are serious scenarios or problems.

Use Case Diagram

 51 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Class Diagram

 52 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Sequence Diagram for adding Book

Sequence diagram for checking or availability of books

 53 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Sequence diagram for calculating fine for the book returned after due date

Sequence Diagram for Borrower Logout

 54 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Collaboration Diagram

 55 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

State Chart Diagram

 56 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Activity Diagram for checking and Issuing the book

 57 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Component Diagram

Deployment Diagram

 58 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Case Study 3:

College Administration System

 59 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 60 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 61 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 62 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

 63 |Page

CASE TOOLS LAB 2023-2024

DEPT OF CSE

Signature of the Faculty

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	 To acknowledge quality education and instill high patterns of discipline making the students technologically superior and ethically strong which involves the improvement in the quality of life in human race.
	 To achieve and impart holistic technical education using the best of infrastructure, outstanding technical and teaching expertise to establish the Students into competent and confident engineers.
	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)
	PEO2–TECHNICALSKILLS
	PEO3–SOFTSKILLS
	PEO4–PROFESSIONALETHICS
	PROGRAMOUTCOMES (POs)
	GENERAL LABORATORY INSTRUCTIONS
	HEAD OF THE DEPARTMENT PRINCIPAL

	OBJECTIVES:
	OBJECTIVESANDOUTCOMES

	RECOMMENDEDSYSTEM/SOFTWAREREQUIREMENTS:
	USE FULTEXTBOOKS/REFERECES/WEBSITES:
	SOURCELANGUAGE (ACaseStudy)
	1. Problem Statement:
	ALGORITHM/PROCEDURE/PROGRAM:
	Program:
	Output:
	[Viva Questions]
	ALGORITHM/PROCEDURE/PROGRAM: (1)
	Program: (1)
	OUTPUT:
	EXERCISE:
	ALGORITHM/PROCEDURE:
	Program: (2)
	OUTPUT: (1)
	EXERCISE: (1)
	ALGORITHM/PROCEDURE: (1)
	[Viva Questions] (1)
	EXERCISE: (2)
	ALGORITHM/PROCEDURE: (2)
	LEXSPECDIFICATIONPROGRAM/SOURCECODE(lexprog.l):
	OUTPUT: (2)
	[Viva Questions] (2)
	EXERCISE: (3)
	6. Problem Statement: Design a Predictive Parser for the following grammar:{E->TE’,E’->+TE’|0,T->FT’,T’-

	Given the parse Table:
	ALGORITHM/PROCEDURE:
	SOURCECODE:
	Viva Questions:
	2. Types of parsers? Examples to each
	4. How do you calculate FIRST(),FOLLOW() sets used in Parsing Table construction?
	ALGORITHM/PROCEDURE/CODE:
	LALR BottomUp Parser
	Output:
	Viva Questions?
	EXERCISE:
	ALGORITHM/PROCEDURE: (1)
	PROGRAM:
	<int.y>
	Output: (1)
	Viva Questions: (1)
	ALGORITHM/PROCEDURE/SOURCECODE:
	PROGRAM: (1)
	Input :
	Output: (2)

	INDEX
	RECOMMENDED SYSTEM / SOFTWARE REQUIREMENTS:
	What is the UML?
	Why We Model
	The Importance of Modeling
	Principles of Modeling
	An Overview of the UML
	The UML Is a Language for Documenting
	Where Can the UML Be Used?
	A Conceptual Model of the UML
	Building Blocks of the UML:
	Things in the UML
	Structural Things
	Classes:
	Interfaces
	Collaborations:
	Use Cases:
	Active Classes:
	Components:
	Nodes:

	Behavioral Things:
	Messages:
	States:
	Grouping Things:
	Packages:
	Annotational Things:
	Relationships in the UML
	UML Diagrams

	Class Diagram
	Name
	Operations

	Object Diagram
	Class vs. Object diagram

	UsecaseDiagram
	Structuring Use Case Diagram with Relationships

	Example of Use case diagram for Online Shopping
	Sequence Diagram
	Example: Sequence diagram for Buying a product use case in a E-commerce website
	5 Collaboration Diagram
	Notations of Collaboration Diagram
	Objects
	Actors
	Links
	Messages

	6. State chart Diagram
	Basic components of a statechart diagram –
	Steps to draw a state chart diagram –

	7 .Activity Diagram
	Activity Diagram Notation Summary

	8. ComponentDiagram
	8. Deployment Diagram
	How to draw a Deployment Diagram?

	Description of ATM System
	INTERACTIONDIAGRAMS
	Purpose:
	Contents of a Sequence Diagram
	Contents of a Collaboration Diagram
	Withdrawal UseCase
	Fig: Sequence diagram for Withdrawal UseCase
	Deposit UseCase
	Inquiry Use Case
	Validate User Usecase:
	Print Bill usecase
	Manage Account
	RESULT:
	Purpose: (1)
	Procedure:-
	Purpose: (2)
	Contents
	Procedure:- (1)
	Purpose: (3)
	Procedure:- (2)
	Users of Library Management System

